Disclaimer

Certain information contained in this presentation and statements made orally during this presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and our own internal estimates and research. While we believe these third-party sources to be reliable as of the date of this presentation, we have not independently verified, and make no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. While we believe our internal research is reliable, such research has not been verified by any independent source.

This presentation contains forward-looking statements. Forward-looking statements are neither historical facts nor assurances of future performance. Instead, they are based on our current beliefs, expectations and assumptions regarding the future of our business, future plans and strategies, our clinical results and other future conditions. All statements other than statements of historical facts contained in this presentation, including statements regarding future results of operations and financial position, business strategy, current and prospective product candidates, planned clinical trials and preclinical activities, product approvals, degree of market acceptance of approved products, research and development costs, current and prospective collaborations, timing and likelihood of success, plans and objectives of management for future operations, and future results of anticipated product candidates, are forward-looking statements. The words "may," "will," "should," "expect," "plan," "anticipate," "could," "intend," "target," "project," "estimate," "believe," "estimate," "predict," "potential" or "continue" or the negative of these terms or other similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words.

The forward-looking statements in this presentation represent our views as of the date of this presentation. Although we believe the expectations reflected in such forward-looking statements are reasonable, we can give no assurance that such expectations will prove to be correct. Accordingly, readers are cautioned not to place undue reliance on these forward-looking statements. Except as required by applicable law, we do not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise. No representations or warranties (expressed or implied) are made about the accuracy of any such forward-looking statements. The forward-looking statements contained herein are subject to significant risks and uncertainties, including those described in the "Risk Factors" section of our Quarterly Report on Form 10-Q for the quarterly period ended March 31, 2020, filed with the Securities and Exchange Commission ("SEC") on May 14, 2020, and our other documents subsequently filed with or furnished to the SEC, including our Quarterly Report on Form 10-Q for the quarterly period ended June 30, 2020. New risk factors and uncertainties may emerge from time to time, and it is not possible to predict all risk factors and uncertainties. There can be no assurance that the opportunity will meet your investment objectives, that you will receive a return of all or part of such investment. Investment results may vary significantly over any given time period. The appropriateness of a particular investment or strategy will depend on an investor's individual circumstances and objectives. We recommend that investors independently evaluate specific investments and strategies.
Prevail Therapeutics overview

- Potential disease-modifying targets identified based on human genetics
- Targeting genetically defined patient populations
- Gene delivery with AAV9 vector has a track record of efficacy and safety

- Phase 1/2 PROPEL trial for Parkinson’s with GBA1 mutations (PD-GBA) underway; PD-GBA affects >90K Americans
- Potential for rapid proof-of-concept for PR001 in neuronopathic Gaucher disease; PROVIDE trial planned to initiate enrollment in 2H 2020

- PR006 IND active for frontotemporal dementia with GRN mutations (FTD-GRN)
- Phase 1/2 PROCLAIM trial on track to initiate enrollment in 2H 2020

- Expertise in developing therapies for neurodegenerative diseases
- Additional genetically-validated targets in Parkinson’s, Alzheimer’s, ALS, FTD
- Leaders in gene therapy manufacturing and process development
Rapid execution in developing gene therapies for patients with urgent unmet needs

2017

- **AUGUST 2017:** Seed financing and REGENXBIO license
- **OCTOBER 2017:** Lab space secured in NYC

2018

- **MARCH 2018:** $75M Series A
- **MAY 2018:** REGENXBIO second agreement

2019

- **MARCH 2019:** $50M Series B
- **MAY 2019:** PR001 PD-GBA IND active
- **DECEMBER 2019:** PR001 nGD IND active

2020

- **JUNE 2019:** $125M IPO
- **MARCH 2020:** PR006 FTD-GRN IND active
Management and Board of Directors

Experienced Management Team

- Asa Abeliovich, MD, PhD
 CEO and Founder
- Yong Dai, PhD
 Chief Technology Officer
- Franz Hefti, PhD
 Chief Development Officer
- Brett Kaplan, MD
 Chief Financial Officer
- Emily Minkow
 Chief Business Officer
- Jeff Sevigny, MD
 Chief Medical Officer
- Kira Schwartz, JD
 General Counsel

Board of Directors

- Francois Nader, MD
 Non-Executive Chairman

- Asa Abeliovich, MD, PhD
 CEO and Founder

- Tim Adams
 Independent

- Carl Gordon, PhD, CFA
 OrbiMed

- Ran Nussbaum
 Pontifax

- Morgan Sheng, MBBS, Ph.D., FRS
 Independent

- Peter Thompson, MD
 OrbiMed
Unique pipeline of potentially disease-modifying AAV9 gene therapies for neurodegenerative diseases

<table>
<thead>
<tr>
<th>Programs</th>
<th>Indication</th>
<th>Approach</th>
<th>Stage of Development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Discovery</td>
</tr>
<tr>
<td>PR001</td>
<td>PD-GBA</td>
<td>GBA1 Gene Transfer</td>
<td>propel</td>
</tr>
<tr>
<td></td>
<td>Type 2 GD</td>
<td>GBA1 Gene Transfer</td>
<td>provide</td>
</tr>
<tr>
<td>PR006</td>
<td>FTD-GRN</td>
<td>GRN Gene Transfer</td>
<td>proclaim</td>
</tr>
<tr>
<td>PR004</td>
<td>Synucleinopathies</td>
<td>GBA1 Gene Transfer + α-Synuclein Knockdown</td>
<td></td>
</tr>
</tbody>
</table>

FTD granted by FDA for PR001 for the treatment of PD-GBA

ODD & RPDD granted by FDA for PR001 for the treatment of GD & nGD, respectively

ODD & FTD granted by FDA for PR006 for the treatment of FTD & FTD-GRN, respectively

Prevail owns worldwide commercial rights to all product candidates in the pipeline
Human genetic studies have identified genes that cause or increase risk of neurodegenerative diseases.

Many of these genes are involved in lysosomal function.

Gene therapy can enable delivery of a functional gene to the CNS.

We plan to develop our therapies for genetically-defined patient populations with corresponding mutations.
AAV9 is well-suited to deliver functional genes or gene knockdown to the CNS

- AAV9-based therapy has shown transformative efficacy and safety and is now approved for SMA
- The effectiveness of AAV9-based therapies is due to its ability to distribute broadly across the CNS
- AAV9 manufacturing process is well-characterized and scalable
- Prevail has licensed exclusive WW rights to AAV9 from REGENXBIO to deliver the genes in our lead programs
PR001 overview

PR001
- AAV9 viral vector delivering the *GBA1* gene, which encodes glucocerebrosidase (GCase)

Route of Administration
- Single intra-cisterna magna (ICM) injection

Lead Indications
- Parkinson’s disease with at least one *GBA1* mutation (PD-GBA)
 - Earlier disease onset, more rapid progression, and higher rate of dementia than sporadic PD
- Neuronopathic Gaucher disease (nGD)
 - Neurological form of Gaucher due to severe GCase deficiency

Progress and Status
- Phase 1/2 PROPEL trial for PD-GBA underway
- Study startup activities ongoing for Phase 1/2 PROVIDE trial for Type 2 Gaucher disease
Parkinson’s disease progression

- With disease progression motor symptoms worsen and cognitive & behavioral symptoms emerge
- Benefit of existing symptomatic therapies diminishes as disease progresses
- No disease-modifying therapy available

Source: Kalia and Lang, Lancet 2015; 386: 896
RBD: REM behavioral sleep disorder; EDS: excessive daytime sleepiness; MCI: mild cognitive impairment
Neuronopathic Gaucher disease overview

- Type 2 Gaucher disease presents in infancy and involves rapidly progressive neurodegeneration leading to death in infancy or early childhood.
- Type 3 Gaucher disease presents in childhood or adulthood and also involves neurologic symptoms.
- Type 2 and Type 3 GD are together referred to as neuronopathic Gaucher disease (nGD).
- There are no FDA approved therapies for nGD.
 - ERT approved for Type 1 GD does not cross the blood-brain barrier.

Source: Sidransky, Molecular Genetics and Metabolism (2004)
ERT= enzyme replacement therapy
PD-GBA and neuronopathic GD are a continuum of pathology with the same underlying genetic mechanism

Number and severity of GBA1 mutations \rightarrow Decreasing enzyme activity \rightarrow Increasing disease severity

- **0 mutations**
 - “Sporadic” Parkinson's

- **1 mild / moderate mutation**
 - PD-GBA with less severe phenotype

- **1 severe mutation**
 - PD-GBA with more severe phenotype

- **2 mild / moderate mutations**
 - Type 1 Gaucher disease

- **2 severe mutations**
 - Type 2 & 3 Gaucher disease (neuronopathic)

At elevated risk of PD-GBA with more severe phenotype
PR001 mechanism of action in PD-GBA

Parkinson’s Disease WITH GBA1 MUTATION

INCREASED GCASE

SUBSTRATE DECREASES (GLUCER, GLUSPH)
PRODUCT INCREASES
SECONDARY LIPIDS NORMALIZE
FUNCTIONAL LYSOSOME

NEURODEGENERATION SLOWED OR STOPPED
INFLAMMATION REDUCED
PROTEIN AGGREGATION REDUCED

PR001 Treated

GBA1 GENE

PR001
PR001 efficacy in CBE mouse model

Activity and substrate reduction (CBE dose-ranging efficacy study)

- **GCase Activity**
 - PR001 low dose = 1.3x10^{10} vg/g brain
 - PR001 mid dose = 4.2x10^{10} vg/g brain
 - PR001 high dose = 1.3x10^{11} vg/g brain

- **GluCer**
 - Vehicle
 - CBE
 - PR001 low dose
 - PR001 medium dose
 - PR001 high dose

- **Astroglisis (glial scarring)**
 - Percentage of animals with astroglial scarring

Activity and substrate reduction (CBE 6-month efficacy study)

- **GCase Activity**
 - Vehicle
 - CBE
 - PR001 low dose
 - PR001 high dose

- **GluCer**
 - Vehicle
 - CBE
 - PR001 low dose
 - PR001 high dose

Efficacy (CBE dose-ranging efficacy study)

- **Rotarod**
 - Vehicle
 - CBE
 - PR001 low dose
 - PR001 medium dose
 - PR001 high dose

Means are presented +/- SEM. *: p<0.05; **: p<0.01; ***: p<0.001. By one-way ANOVA and Fischer’s exact test for glial scarring. For rotarod, nominal p values were calculated by linear regression in the CBE-treated groups, with gender corrected for as a covariate. Activity, substrate and astroglisis (glial scarring) measured in the cortex PR001 low dose = 1.3x10^{10} vg/g brain, PR001 mid dose = 4.2x10^{10} vg/g brain, PR001 high dose = 1.3x10^{11} vg/g brain.
PR001 efficacy in genetic mouse model

- PR001 increased GCase enzyme activity (cortex)
- 4L/PS-NA mice exhibited glycolipid accumulation
- PR001 suppressed lipid accumulation (cerebellum)
- 4L/PS-NA mice exhibited motor behavior dysfunction
- PR001 improved motor function in a beam walk test

Each bar represents the mean ± SEM
P-value: *p<0.05, ***p<0.001 by one-way analysis of variance followed by Tukey HSD
#: p<0.05 for effect of PR001 injected dose by multiple linear regression for genotype and dose across all animals
PR001 safety and GCase expression in NHPs

Safety
- No PR001-related safety events or adverse findings were observed in three NHP studies
- Highest dose tested in NHPs provides:
 - 6x safety margin to PD-GBA starting dose
 - 5x safety margin to nGD starting dose

NHP GCase expression following ICM delivery

- Broad distribution of PR001 vector to all brain areas
- Significant elevation of GCase protein levels in brain tissue

NHP study: Control Dose = 0 vg/g brain weight; Low Dose = 6.2x10^10 vg/g brain weight PR001; High Dose = 2.3x10^11 vg/g brain weight PR001; N=3 per group
Dose dependent trend analysis using Williams’ Trend test across all brain regions and dose groups: p < 0.05
PR001 PD-GBA Phase 1/2 trial
Open label, ascending dose

PR001 PD-GBA Patients
- Single or biallelic *GBA1* mutations
- Moderate to severe Parkinson’s disease
- Stable background PD medication

Study Design
- **Single ICM injection**
- **2 month biomarker readout**
- **12 month clinical readout**
- **5-year safety and clinical follow-up**

Groups
- **PR001 Low Dose (N=6)**
- **PR001 High Dose (N=6)**

Endpoints
- Safety and tolerability
- Key biomarkers: GCase, GluCer, GluSph (CSF and blood)
- Additional biomarkers: α-Synuclein, NfL, DAT SPECT, MRI
- Efficacy: MDS-UPDRS, cognition, ADLs
PROPEL PD-GBA Phase 1/2 trial: early patient data
As of August 2020

Background

- Two PD-GBA patients enrolled in PROPEL trial prior to protocol change to open-label design: one administered PR001; one received sham procedure
- Patient who received PR001 (1.4x10^{14} vg) also diagnosed with Gaucher disease (GBA1 mutations in both chromosomal copies)

Biomarkers

- CSF GCase enzyme activity increased from undetectable at baseline to normal level at ~Month 3

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Day 0</th>
<th>~Month 3</th>
<th>Normal range (adult)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCase activity in CSF (μmol/L/d)</td>
<td>Undetectable</td>
<td>3.0</td>
<td>1.1 - 8.1</td>
</tr>
</tbody>
</table>

Clinical Safety and Efficacy

- PR001 ICM administration well-tolerated
- Patient did not complete protocol-specified immunosuppression regimen due to steroid intolerance
- Three months following PR001 administration, patient experienced SAEs presumed to be AAV9-immune mediated
- Patient’s condition responded to additional immunosuppressive treatment; SAEs have markedly resolved
- PROPEL protocol amended to include modified immunosuppression regimen
Goal of PR001 treatment is to deliver the *GBA1* gene to restore GCase activity in PD-GBA patients

- Human genetics suggest increasing GCase activity by 20-30% of healthy levels expected to be clinically meaningful
- Mouse model data show linear correlation between GCase activity and behavioral performance

Source: Liu et al., Annals of Neurology 2016; Thaler et al., Parkinsonism and Related Disorders 2017
PR001 Type 2 Gaucher disease Phase 1/2 trial
Open label

Type 2 Gaucher Patients
- Infants 0-24 months old
- Biallelic GBA1 mutations
- Neurological signs & symptoms consistent with Type 2 Gaucher disease
- Stable SoC background medications

Single ICM injection
2 month biomarker readout
12 month clinical readout
5-year safety and clinical follow-up

PR001 (Open label, N=15)

Safety and tolerability
- Key biomarkers: GCase, GluCer, GluSph (CSF and blood)
- Time to clinical event (e.g., tracheostomy, PEG placement, death)
- Efficacy: behavior, cognition, gross motor, function, QoL

ICM: intra-cisterna magna; QoL: quality of life; SoC: standard of care; PEG: percutaneous endoscopic gastrostomy
Type 2 Gaucher compassionate use: early patient data
As of August 2020

Background

- Type 2 Gaucher disease patient dosed with PR001 (1.3x10^{14} vg) in Jan 2020 following compassionate use request
- Patient was ~22 months old at dosing

Biomarkers

- CSF GCase enzyme activity increased from undetectable at baseline to normal level at Month 4

<table>
<thead>
<tr>
<th></th>
<th>Day 0</th>
<th>Month 1</th>
<th>Month 4</th>
<th>Normal range (adult)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCase activity in CSF (μmol/L/d)</td>
<td>Undetectable</td>
<td>1.0</td>
<td>4.7</td>
<td>1.1 - 8.1</td>
</tr>
</tbody>
</table>

Clinical Safety and Efficacy

- PR001 ICM administration well-tolerated; no AEs reported
- Patient clinically stable; no apparent worsening of the patient’s neurological symptoms since PR001 administration
- Follow-up clinical assessments are planned
PR001 market opportunity

Disease Overview

PD-GBA
- PD patients with at least one *GBA1* mutation
- Earlier onset, faster progression, and higher prevalence of dementia

Neuronopathic GD
- Type 2 Gaucher: Severe progressive neurologic disease; mortality by age 2
- Type 3 Gaucher: Juvenile or adult onset with multiple neurological manifestations

Treatment & Unmet Need

PD-GBA
- No therapies to slow or stop disease progression
- Benefit of symptomatic therapies diminishes as disease progresses

Neuronopathic GD
- No effective therapies for the neurologic manifestations of Gaucher
- ERTs used for peripheral manifestations; do not enter the brain

Market Size

PD-GBA
- Parkinson’s prevalence 7M worldwide, 1M in US
- 7-10% of PD patients worldwide have *GBA1* mutation

Neuronopathic GD
- >1,000 patients in the major markets
- 6% of Gaucher cases in the US but higher prevalence in other regions

Source:
PR006 overview

PR006
- AAV9 viral vector delivering the *GRN* gene, which encodes progranulin

Route of Administration
- Single intra-cisterna magna (ICM) injection

Lead Indications
- Frontotemporal dementia with *GRN* mutation (FTD-GRN)
 - Rapidly progressive dementia impacting behavior and language
 - Leads to death within 3-10 years

Progress and Status
- FTD-GRN IND active and study startup activities ongoing for Phase 1/2 PROCLAIM trial
Frontotemporal dementia with \textit{GRN} mutation is caused by progranulin deficiency

- FTD pathology includes neurodegeneration and inflammation
- Progranulin is a secreted factor that is enriched in lysosomes
- Progranulin deficiency leads to lysosomal dysfunction

Number of \textit{GRN} mutations causes varying degrees of progranulin deficiency resulting in spectrum of disease.

Number of \textit{GRN} mutations \rightarrow Decreasing progranulin \rightarrow Increasing disease severity

- 0 mutations
 - Healthy Individuals
- 1 mutation (Heterozygous)
 - Frontotemporal Dementia (Adult onset)
- 2 mutations (Homozygous)
 - Neuronal Ceroid Lipofuscinosis (Childhood onset)
PR006 efficacy in aged *Grn* knockout mouse model

- Vector genomes were observed to be present in the cerebral cortex 2 months after ICV PR006 administration.

14-16-month-old mice were dosed with 2.4x10^11 vg/g brain ICV PR006, and after 2 months, mice were sacrificed and vector genomes and progranulin protein levels were quantified. Statistics determined using Kruskall-Wallis; * = p < 0.05, ** = p < 0.01. Data is presented as mean ± SEM (n=5/excipient group and n=7/PR006 group). Vector genome levels below 50 (dotted line) were considered not positive. Vg = vector genomes; WT= wildtype.

- PR006 treatment increased CSF expression of progranulin protein in progranulin knockout mice.

- PR006 treatment increased cerebrocortical expression of progranulin protein in progranulin knockout mice to near normal levels.
PR006 efficacy in adult *Grn* knockout mouse model

<table>
<thead>
<tr>
<th>Progranulin expression</th>
<th>Lipofuscinosis</th>
<th>Neuroinflammation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progranulin mRNA</td>
<td>Lipofuscin accumulation</td>
<td>Neuroinflammation (Tnf mRNA)</td>
</tr>
<tr>
<td>(cerebral cortex)</td>
<td>(hippocampus)</td>
<td>(cerebral cortex)</td>
</tr>
<tr>
<td>PR006 dose-dependently increased expression of the GRN transgene</td>
<td>PR006 dose-dependently reduced accumulation of lipofuscin, an indicator of lysosomal dysfunction, throughout the brain</td>
<td>PR006 treatment reduced gene expression of proinflammatory cytokine TNFα (Tnf)</td>
</tr>
</tbody>
</table>

Means are presented +/- SEM. N=8-10 per group. **p<0.01, ***p<0.001 by ANOVA followed by Dunnett's multiple tests correction comparing each group to excipient-treated *Grn* KO mice. PR006 low dose = 2.7x10^9 vg/g brain, PR006 mid dose = 2.7x10^10 vg/g brain, PR006 high dose = 2.7x10^11 vg/g brain.
PR006 safety and progranulin expression in NHPs

Results

- ICM PR006 administration resulted in widespread transduction in the CNS and periphery, and elevated progranulin protein levels in the CSF
- No adverse PR006-related findings in GLP NHP tox study with 2.4x safety margin to clinical starting dose
- ICM PR006 treatment dose-dependently increased progranulin expression in the CSF

NHPs received ICM administration of excipient, PR006 low dose = 6.5x10⁹ vg/g brain or PR006 high dose = 6.5x10¹⁰ vg/g brain

Bars represent mean ± SEM. P-value: *p<0.05, by one-way dose dependence response analysis using William’s trend test. ICM = intra-cisterna magna
PR006 FTD-GRN Phase 1/2 trial
Open label, ascending dose

FTD-GRN Patients
- 30-80 years old
- Single pathogenic *GRN* mutation
- Symptomatic disease stage
- Stable background medications

Safety and tolerability
- Key biomarkers: progranulin, NfL, volumetric MRI
- Efficacy: CDR plus NACC FTLD; measures of behavior, cognition, language, function, QoL

PR006 FTD-GRN Phase 1/2 trial
- **PR006 Low Dose (N=5)**
- **PR006 Mid Dose (N=5)**
- **PR006 High Dose (N=5)**
PR006 market opportunity

| **Disease Overview** | - Progressive and devastating early-onset form of dementia
|| - Leads to death within 3-10 years |
| **Treatment & Unmet Need** | - No therapies approved for FTD
|| - No therapies have shown disease modification |
| **Market Size** | - FTD prevalence ~50,000 in US; ~80-110,000 in EU
|| - 5-10% of FTD patients have a *GRN* mutation |

FTD-GRN

CMC strategy and capabilities

Established internal process development capabilities; working with CDMOs to supply clinical trials with drug product

Phase 1/2 Material
- Robust adherent HEK293 process to maximize speed to the clinic
- Partnership with established CDMO

Phase 3 and Commercial Material
- Baculovirus platform to establish high-yield scalable process
- Process development and scale up completed; demonstrated promising yield and potency
- Partnered with Lonza to develop and manufacture drug supply for late-stage clinical trials and commercial production using baculovirus platform
- GMP manufacturing and comparability studies underway
Prevail Therapeutics summary

- Developing potentially disease-modifying gene therapies for neurodegenerative disorders
- PR001 Phase 1/2 trial for PD-GBA underway
- PR001 Phase 1/2 trial for GD2 to initiate enrollment in 2020
- PR006 Phase 1/2 trial for FTD-GRN to initiate enrollment in 2020
- Pipeline of gene therapy programs for neurodegenerative diseases using a precision genetic medicine approach